skip to main content


Search for: All records

Creators/Authors contains: "Wang, Miao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. Summary

    The mechanical and hydraulic properties of unsaturated clay under nonisothermal conditions have practical implications in geotechnical engineering applications such as geothermal energy harvest, landfill cover design, and nuclear waste disposal facilities. The water menisci among clay particles impact the mechanical and hydraulic properties of unsaturated clay. Molecular dynamics (MD) modeling has been proven to be an effective method in investigating clay structures and their hydromechanical behavior at the atomic scale. In this study, we examine the impact of temperature increase on the capillary force and capillary pressure of the partially saturated clay‐water system through high‐performance computing. The water meniscus formed between two parallel clay particles is studied via a full‐scale MD modeling at different elevated temperatures. The numerical results have shown that the temperature increase impacts the capillary force, capillary pressure, and contact angle at the atomic scale. The capillary force on the clay particle obtained from MD simulations is also compared with the results from the macroscopic theory. The full‐scale MD simulation of the partially saturated clay‐water system can not only provide a fundamental understanding of the impact of temperature on the interface physics of such system at the atomic scale, but also has practical implication in formulating physics‐based multiscale models for unsaturated soils by providing interface physical properties of such materials directly through high‐performance computing.

     
    more » « less
  3. Metal–organic coordination networks at surfaces, formed by on-surface redox assembly, are of interest for designing specific and selective chemical function at surfaces for heterogeneous catalysts and other applications. The chemical reactivity of single-site transition metals in on-surface coordination networks, which is essential to these applications, has not previously been fully characterized. Here, we demonstrate with a surface-supported, single-site V system that not only are these sites active toward dioxygen activation, but the products of that reaction show much higher selectivity than traditional vanadium nanoparticles, leading to only one V-oxo product. We have studied the chemical reactivity of one-dimensional metal–organic vanadium – 3,6-di(2-pyridyl)-1,2,4,5-tetrazine (DPTZ) chains with O 2 . The electron-rich chains self-assemble through an on-surface redox process on the Au(100) surface and are characterized by X-ray photoelectron spectroscopy, scanning tunneling microscopy, high-resolution electron energy loss spectroscopy, and density functional theory. Reaction of V-DPTZ chains with O 2 causes an increase in V oxidation state from V II to V IV , resulting in a single strongly bonded (DPTZ 2− )V IV O product and spillover of O to the Au surface. DFT calculations confirm these products and also suggest new candidate intermediate states, providing mechanistic insight into this on-surface reaction. In contrast, the oxidation of ligand-free V is less complete and results in multiple oxygen-bound products. This demonstrates the high chemical selectivity of single-site metal centers in metal–ligand complexes at surfaces compared to metal nanoislands. 
    more » « less
  4. Dot1 (disruptor of telomeric silencing-1), the histone H3 lysine 79 (H3K79) methyltransferase, is conserved throughout evolution, and its deregulation is found in human leukemias. Here, we provide evidence that acetylation of histone H4 allosterically stimulates yeast Dot1 in a manner distinct from but coordinating with histone H2B ubiquitination (H2BUb). We further demonstrate that this stimulatory effect is specific to acetylation of lysine 16 (H4K16ac), a modification central to chromatin structure. We provide a mechanism of this histone cross-talk and show that H4K16ac and H2BUb play crucial roles in H3K79 di- and trimethylation in vitro and in vivo. These data reveal mechanisms that control H3K79 methylation and demonstrate how H4K16ac, H3K79me, and H2BUb function together to regulate gene transcription and gene silencing to ensure optimal maintenance and propagation of an epigenetic state.

     
    more » « less